

http://electronics.henningkarlsen.com (C)2013 Henning Karlsen

LCD5110_Basic
Arduino and chipKit library for Nokia 5110 compatible LCDs

Manual

LCD5110_Basic Page 2

PREFACE:
This library has been made to make it easy to use the basic functions of the Nokia 5110 LCD
module on an Arduino or a chipKit.

Basic functionality of this library are based on the demo-code provided by ITead studio. You
can find the latest version of the library at http://www.henningkarlsen.com/electronics

You can always find the latest version of the library at
http://electronics.henningkarlsen.com/

If you make any modifications or improvements to the code, I would appreciate that you share
the code with me so that I might include it in the next release. I can be contacted through
http://electronics.henningkarlsen.com/contact.php.

For version information, please refer to version.txt.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

LCD5110_Basic Page 3

Defined Literals:

Alignment
For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Included Fonts:

SmallFont

Charactersize:

Number of characters:
 6x8 pixels
95

MediumNumbers

Charactersize:

Number of characters:
 12x16 pixels
13

BigNumbers

Charactersize:

Number of characters:
 14x24 pixels
13

LCD5110_Basic Page 4

Functions:

LCD5110(SCK, MOSI, DC, RST, CS);
The main class constructor.

Parameters: SCK: Pin for Clock signal

MOSI: Pin for Data transfer
DC: Pin for Register Select (Data/Command)
RST: Pin for Reset
CS: Pin for Chip Select

Usage: LCD5110 myGLCD(8, 9, 10, 11, 12); // Start an instance of the LCD5110 class

InitLCD([contrast]);

Initialize the LCD.

Parameters: contrast: <optional>
 Specify a value to use for contrast (0-127)
 Default is 70

Usage: myGLCD.initLCD(); // Initialize the display
Notes: This will reset and clear the display.

setContrast(contrast);

Set the contrast of the LCD.

Parameters: contrast: Specify a value to use for contrast (0-127)
Usage: myGLCD.setContrast(70); // Sets the contrast to the default value of 70

clrScr();

Clear the screen.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

clrRow(row[, start_x[, end_x]]);

Clear a part of, or a whole row.

Parameters: row: 8 pixel high row to clear (0-5)

start_x: <optional>
 x-coordinate to start the clearing on (default = 0)
end_x: <optional>
 x-coordinate to end the clearing on (default = 83)

Usage: myGLCD.clrRow(5, 42); // Clear the right half of the lower row

invert(mode);

Set inversion of the display on or off.

Parameters: mode: true - Invert the display

 false – Normal display
Usage: myGLCD.invert(true); // Set display inversion on

LCD5110_Basic Page 5

print(st, x, y);
Print a string at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character
y: y-coordinate of the upper, left corner of the first character

Usage: myGLCD.print(“Hello World”,CENTER,0); // Print “Hello World” centered at the top of the screen
Notes: The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.

In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.
The string can be either a char array or a String object

printNumI(num, x, y[, length[, filler]]);

Print an integer number at the specified coordinates.
 You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign
length: <optional>
 minimum number of digits/characters (including sign) to display
filler: <optional>
 filler character to use to get the minimum length. The character will be inserted in front
 of the number, but after the sign. Default is ' ' (space).

Usage: myGLCD.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen
Notes: The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.

In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.

printNumF(num, dec, x, y[, divider[, length[, filler]]]);

Print a floating-point number at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign
divider: <Optional>
 Single character to use as decimal point. Default is '.'
length: <optional>
 minimum number of digits/characters (including sign) to display
filler: <optional>
 filler character to use to get the minimum length. The character will be inserted in front
 of the number, but after the sign. Default is ' ' (space).

Usage: myGLCD.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
Notes: Supported range depends on the number of fractional digits used.

Approx range is +/- 2*(10^(9-dec))
The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.
In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().

Parameters: fontname: Name of the array containing the font you wish to use
Usage: myGLCD.setFont(SmallFont); // Select the font called SmallFont
Notes: You must declare the font-array as an external or include it in your sketch.

invertText(mode);

Select if text printed with print(), printNumI() and printNumF() should be inverted.

Parameters: mode: true - Invert the text
 false – Normal text

Usage: myGLCD.invertText(true); // Turn on inverted printing
Notes: SetFont() will turn off inverted printing

drawBitmap (x, y, sx, sy, data);

Draw a bitmap on the screen.

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data

Usage: myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap in the upper left corner
Notes: You can use the online-tool “ImageConverter Mono” to convert pictures into compatible arrays.

The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h> when using an Arduino other than Arduino Due.

